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ABSTRACT

Reconstructing gene regulatory networks, especially the dynamic gene networks that reveal

the temporal program of gene expression from microarray expression data, is essential in sys-

tems biology. To overcome the challenges posed by the noisy and under-sampled microarray

data, developing data fusion methods to integrate legacy biological knowledge for gene net-

work reconstruction is a promising direction. However, large amount of qualitative biological

knowledge accumulated by previous research, albeit very valuable, has received less attention

for reconstructing dynamic gene networks due to its incompatibility with the quantitative

computational models.

In this dissertation, I introduce a novel method to fuse qualitative gene interaction infor-

mation with quantitative microarray data under the Dynamic Bayesian Networks framework.

This method extends the previous data integration methods by its capabilities of both utiliz-

ing qualitative biological knowledge by using Bayesian Networks without the involvement of

human experts, and taking time-series data to produce dynamic gene networks. The experi-

mental study shows that when compared with standard Dynamic Bayesian Networks method

which only uses microarray data, our method excels by both accuracy and consistency.
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CHAPTER 1. INTRODUCTION

1.1 Biological Background

The recent completion of genome sequencing projects of many species provides us with an

unprecedented amount of genetic information, and thus shifted our focus from obtaining gene

sequence data to identification of gene functions. The traditional methodology which separately

studies basic units of information (or genes) is not sufficient since it is widely believed that

biological systems are complex, where thousands of genes and their products interact in concert

to enable life. Contrary to the traditional approaches, recently emerged functional genomics

develops the genome-wide or system-wide experiments in hope of obtaining a global view of

such a complex biological system.

An important objective of the functional genomics is to understand the controlling mech-

anism of the expression of these genes as well as the consequent synthesis of proteins, and

ultimately encode the knowledge learned from the experiments into the format of a graph,

namely gene regulatory network (GRN). To achieve this, computational and statistical tools

are especially needed.

1.1.1 Gene Expression

The genetic information carried by an organism is primarily inscribed in deoxyribonucleic

acid (DNA). DNA is helix-shaped molecule whose constituents are two parallel strands of

nucleotides. There are four types of nucleotides in DNA denoted by letters A (for adenine), T

(thymine), C (cytosine) and G (guanine). The two strands of DNA are reverse complementary,

meaning that the second strand is always derivable from the first by pairing As with Ts and

Cs with Gs and vice versa. Some contiguous pieces of DNA strand have been associated with
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certain functions in the living organism, we name them “genes”. Genes are the functional and

physical unit of heredity [Bodenreider, 2004].

The process by which a gene’s DNA sequence is converted into functional materials of a cell

is usually referred to as gene expression. In most cases, the functional materials produced by

gene expression are proteins. Protein is made by a linear sequence of amino acids, and the type

of each amino acid is defined by three consecutive bases on DNA which is known as codon. For

example, three bases “CGA” comprise a codon which would code for the amino acid arginine.

Theoretically, there are 43 = 64 types of amino acid, while in reality some combinations of

three bases point to the same amino acid, leaving the number of amino acid types to be 20.

Protein is considered the most basic building block of life. Its roles include constituting

cell structures, regulating cellular processes, catalyzing biochemical reactions in metabolic

pathways, and many other functions. A protein’s functions are determined by its particular

physical structure and chemical properties. These properties in turn are determined by the

particular sequence of 20 possible biologically-active amino acids as well as the exact manner

the amino acid chain is folded into a three-dimensional structure. The very existence of life is

made possible by thousands of different proteins acting at the right times and right places in

a cell.

Figure 1.1 shows the gene expression process (source: http://www.accessexcellence.org/RC-

/VL/GG/protein synthesis.html). The first step is transcription of DNA, where mRNAs (mes-

senger RNA) are made based on the information of the gene sequence. Translation occurs after

the transcription of DNA to mRNA. The translation of mRNA into protein depends on adap-

tor molecules that recognize both an amino acid and a triplet of nucleotides. These adaptors

consist of a set of small RNA molecules known as tRNA, each about 80 nucleotides in length.

The ribosome is a complex of more than 50 different proteins associated with several struc-

tural rRNA molecules. rRNA is a machinery for synthesizing proteins by translating mRNA.

Each ribosome is a large protein synthesizing machine, on which tRNA molecules position

themselves for reading the genetic message encoded in an mRNA molecule.

The gene expression processes also depend on other factors not depicted in Figure 1.1, which
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Figure 1.1 Process whereby DNA encodes for the production of amino
acids and proteins.

include chromosomal activation or deactivation, control of transcription initiation, processing

of RNA, RNA transport, mRNA degradation, initiation of translation and post-translational

modifications.

1.1.2 Gene Regulation

A gene regulation system consists of genes, cis-elements, and regulators [Filkov, 2005].

Figure 1.2 illustrates the regulatory process of genes. In most cases the regulators are proteins,

sometimes they also can be small molecules, such like RNAs and metabolites. The proteins that

participate in regulatory system are usually called transcription factors (TFs), and sometimes

they are also referred to as trans-regulatory elements. Cis-regulatory elements (or cis-elments

in simple form), the complementary to trans-regulatory elements, are the DNA segments in

the same strand of genes that control the expression of correspondent genes. The regulatory

mechanism involves the binding of certain TFs to cis-elements in the cis-region of genes, and



www.manaraa.com

4

consequently control the level of target gene’s expression during transcription. A gene might

be two-faced: its expression is regulated by some regulators, while its own expressed products

can be regulators for other genes. The complex regulatory connections, together with an

interpretation scheme form gene regulatory networks (GRNs).

Figure 1.2 Regulation of Gene Expression

GRNs can be viewed as a cellular input-output device. A simple GRN would consist of one

or more input signaling pathways, regulatory proteins that integrate the input signals, several

target genes, and the RNA and proteins produced from those target genes. In addition, such

networks often include dynamic feedback loops that provide for further regulation of network

architecture and output.

1.1.3 Microarray Experiment

Traditional biology typically focuses on a single component in the living organism, e.g.,

a gene, a protein, or a reaction. Although there are remarkable achievements made by the

research efforts guided by this methodology, traditional biology can hardly be adapted to

the complex and integrated nature of real world biological processes, which make it difficult

to explore the complex relationships among biological entities. For example, according to

[Lockhart and Winzeler, 2000], both [Golub et al., 1999] and [Alizadeh et al., 2000] reported

that monitoring a large number of genes is crucial for discovering the gene expression (mRNA)

markers to classify several diseases. In [Golub et al., 1999] 50 genes were selected from more

than 6,000 genes monitored on the arrays, the predictions based on the expression levels of
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these 50 genes are by far more accurate than the prediction from any single gene. The results

of both of these studies indicate that measurements with more individuals and more genes will

be needed to identify robust expression markers that are predictive of clinical outcome. As

a result, the high-throughput techniques that can simultaneously monitor gene activities are

desired.

Microarray technology is one of such novel high-throughput tools that enable global anal-

ysis of genes and gene productions [DeRisi et al., 1997]. Among various types of microarray

platform, here we use the popular DNA microarray to illustrate the general methodology.

Figure 1.3 shows the process of microarray experiments.

Figure 1.3 An Overview of Microarray Experiment [Duggan et al., 1999]

Microarray experiments usually require three phases. In the first phase, thousands of dif-

ferent “probes” are placed on the solid surface of a small chip, depending on the specific

technology of the DNA microarray, the probe could be a cDNA sequence, or just a short DNA

sequence which can exclusively match a part of the target mRNA sequence (called oligonu-

cleotide). The chip is arranged as a rectangular 2-D grid of spots, and each of the probes is

placed on a spot of the grid.



www.manaraa.com

6

The second phase consists of pouring genetic material containing RNA which is obtained

from the biological samples to be studied. These samples could be a pair of cancer tumor and

normal organism, or cells being stimulated to starvation, high temperature, etc. For cDNA

microarrays, two samples are needed, one for real test, another one is called reference sample

which is used to be compared with the test sample. These two samples are labeled with

different fluorochromes for the purpose of obtaining gene expression level in the next step:

the test sample is labeled with the flurochrome Cy3, and the control sample is labeled with

a different flurochrome Cy5. Because of the sequence similarity and complementariness the

probes are likely to hybridize with their correspondent target but not the other RNA molecules.

The amount of the hybridization products obtained is an indicator of how much RNA is being

expressed by each one of the being studied.

The third phase consists of using a quantifying the amount of the hybridization products.

By using laser scanner connected to a computer, fluorescence from array spots is detected and

digitally imaged, then the intensity of of fluorescence from each spot is quantified. In cDNA

microarrays, two independent images are generated for both samples (one only detects Cy3

and one only detects Cy5), the ratios of the measurement of the two samples is used in the

subsequent data analysis.

Huge amount of data has been generated by microarray experiments, however, there is

still a long way to go to transform the data into meaningful biological insight as data analysis

methods are especially required in this process. In the next section we briefly review existing

methods on microarray data analysis.

1.2 Microarray Data Analysis

1.2.1 Clustering

The large number of genes that are profiled in microarray experiment provides us with

opportunities to a gain global view of the experiment results. Among various existing classes

of data analysis methods, clustering is the most popular to date in this line. The key objective

of the gene expression data clustering methods is to partition genes into groups based on given
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expression profiles of each gene, so that the groups are homogeneous and well separated. It

allows biologists to identify potentially meaningful relationships among genes within a cluster,

or the relationships between clusters. Numerous literatures have reported successful uses of

clustering methods on expression data in different aspect; for example, clustering was used to

determine function for unknown genes [Eisen et al., 1998], to look at expression programs for

different systems in the cell [Spellman et al., 1998] and for identifying sets of genes that are

related to a certain type of cancer or other diseases [Alon et al., 1999].

An important technical component of clustering algorithms is the way to calculate the pair-

wise distance between two variables. The most commonly used distance measurements in the

gene expression literature include Euclidean distance [Ewing et al., 1999], Pearson correlation

[D’haeseleer et al., 1998], and mutual information [Butte and Kohane, 2000, Michaels et al., 1998].

With the distance function determined, the goal of a clustering algorithm is to achieve the min-

imum intra-cluster distances and the maximum inter-cluster distances.

Clustering algorithms can be divided into hierarchical and non-hierarchical methods. Hi-

erarchical methods are named by their outcome which can be viewed as an multiple-layered

hierarchy of nested clusters, and each cluster contains only a few sub-clusters. Hierarchical

methods can be further categorized as agglomerative methods and divisive methods. Agglom-

erative methods take the bottom-up methodology, that is, start with forming small clusters

with a few variables that are nearest in distance, and then recursively combine small clusters

into bigger ones, until all clusters connect together. Divisive methods, on the other hand,

go in reversed direction. All the variables are initially put into one cluster, divisive methods

recursively divide it to smaller clusters. Figure 1.4 illustrates the general idea of Hierarchical

clustering.

Although clustering is a mature technology in the area of statistics through decades of study,

the recent availability of microarray data has sparked the development of multiple new meth-

ods. Many early works (e.g., [Michaels et al., 1998], [Eisen et al., 1998] and [Alon et al., 1999])

use hierarchical clustering, while more recent research focus more on non-hierarchical meth-

ods, for example, [Tamayo et al., 1999] and [Toronen et al., 1999] use SOMs-like methods,
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Figure 1.4 Hierarchical Clustering of Microarray Expression Data
[Eisen et al., 1998]

[Ben-Dor et al., 2000] proposed a method with features with both agglomerative hierarchical

clustering and K-means, and [Sasik et al., 2001] uses a Monte-Carlo like clustering method.

Non-hierarchical clustering methods normally cluster variables in an iterative process thus

certain quantitative objective is optimized. Examples of non-hierarchical include K-means

([MacQueen, 1967]), Self-Organized Map (SOM) ([Kohonen, 1989]) and expectation-maximization

(EM) ([Dempster et al., 1977]).

1.2.2 GRN Reconstruction

Clustering is a coarse-grained data analysis method of microarray expression profiles. Al-

though it has successfully provided a global understanding of microarray experiments in pre-

vious works, there are several limitations that prevent clustering technology to be a tool for

obtaining more detailed insight from the experimental results.

First, clustering is an unsupervised learning process, as a result it is difficult for clustering

technologies to integrate the prior knowledge. However, using biological prior knowledge is

very important for the success of transferring microarray data into real knowledge. In par-



www.manaraa.com

9

ticular, the underlying assumption of clustering microarray data is that genes sharing similar

expression profiles also share similar biological properties, this assumption may not always

holds [Altman and Raychaudhuri, 2001]. Genes with similar expression patterns may not al-

ways share the same function or regulatory mechanism. Even when similar expression levels

correspond to similar functions, the result of clustering cannot tell which gene inside a partic-

ular cluster has a certain function. To address these problems, further justifying the clustering

result using existing biological knowledge is needed, and as reported in [Shatkay et al., 2000],

is not trivial and requires a lot of effort.

Second, standard clustering algorithms group genes whose expression levels are similar

across all conditions. However, a group of genes involved in the same biological process might

only be co-expressed in a small subset of experimental conditions ([Carmona-Saez et al., 2006]).

Furthermore, in the time-series microarray experiments, data points have a certain order and

may not be independent of each others, genes may express at different times but serve com-

plementing roles of one unifying function. Although several approaches have been developed

to find genes with high similarity of a subset of expression profiles ([Cheng and Church, 2000],

[Getz et al., 2000]), they are still limited to static microarray data thus cannot reveal temporal

relationships among genes.

Third, clustering methods do not catch the conditional expression of genes and further

discover the causal relationship between genes. Many genes can be conditionally co-expressed

with different sets of genes, which may reflect the different biological roles that a gene product

can play in the cell [Gasch and Eisen, 2002]. With the time-series microarray experiments, in

addition to identifying genes with similar expression patterns, people also seek to infer causality

among genes, that is, identifying the genes that play roles as regulators and the genes that

they regulate. The coarse-grained clustering methods are not capable to give information in

this detail.
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1.2.3 Challenges

To address these limitations of clustering methods, a new branch of expression data analysis

known as gene network reconstruction or “reverse-engineering” of GRNs has emerged.

Most early research works on microarray data analysis assume microarray experiments are

mutually independent, ignoring the fact that real-world gene expression is a temporal process

[Bar-Joseph, 2004], hence the expression levels at a certain time point may depend on the

previous expression levels. To explore this temporal regulatory relationship among genes,

time course microarray data are collected by conducting experiments across a number of time

points [Spellman et al., 1998, Cho et al., 1998]. Recently, more works focus on modeling and

analyzing the temporal aspects of gene expression data.

There are some inherent limitations of microarray data. First, microarray data are nor-

mally under-sampled: a typical microarray dataset contains thousands of genes, but only has

at most a couple of hundred experiments. This makes microarray data statistically insufficient

for reconstructing even moderate size gene networks. Second, as an high-throughput method,

microarray experiments sacrifice specificity for scale in the quality to coverage trade-off, yield-

ing too many false positives [Troyanskaya, 2005]. As a result, microarray data are typically

very noisy, with the noisy data as the input, the outcome of computational methods is hardly

reliable. Because of these limitations, microarray data alone is not enough to make accurate

prediction of gene networks [Bar-Joseph, 2004].

On the other hand, there is a wealth of knowledge accumulated over decades by previous

biology research, including protein-protein and protein-DNA interactions, transcription factor

binding location data, phylogenetic profiles, ChIP-chip data, and even biological literature.

Motivated by the challenges posed by microarray data, many recent research works try to inte-

grate this additional information together with microarray data into the network reconstruction

process. Several data integration methods in this field have been reported in the literature.

Some are based on pairwise statistical analysis or mutual information [De Bie et al., 2005,

Carmona-Saez et al., 2006, Margolin et al., 2006], while others are based on more compli-

cate machine learning methods such as Bayesian Network [Bernard and Hartemink, 2005],
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[Segal et al., 2003, Imoto et al., 2003, Li et al., 2006, Nariai et al., 2004] and Kernel Meth-

ods/SVM [Kato et al., 2005, Lanckriet et al., 2004, Yamanishi et al., 2004].

Some of the data generated by previous research is quantitative. For example, transcription

factor binding location data has p-values to represent the quality of the data. It is natural

to integrate the quantitative information into probabilistic learning models such as Bayesian

Networks for gene network reconstruction. However, some other data such as gene ontology,

domain expert’s annotation and protein-protein interactions extracted from database cannot be

represented by numbers. As reported in [Druzdzel and van der Gaag, 1995], a domain expert

may be reluctant to provide numerical probabilities in a certain matter, rather they may simply

give a statement like “more expression of gene A likely leads to less expression of gene B”.

these qualitative evidences, although not in a precise format, are still very valuable and worth

the effort to make use of them. Unfortunately, there is not much previous research addressing

the problem of automatically integrating qualitative biological knowledge for GRN structure

learning.

1.3 Overview

In Chapter 2, we introduce gene network reconstruction with the focus on using Bayesian

Networks and its extension Dynamic Bayesian Networks. In Chapter 3, we present our novel

data integration method which can make use of qualitative biological knowledge using Dynamic

Bayesian Networks, and show it is feasible to be parallelized. The experimental results and

discussion of our method are included in Chapter 4. In chapter 5, we add short-time cross

correlation into our method and show its potential to make better network structure prediction.

In Chapter 6 we present a novel 3-D gene network visualization system.
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CHAPTER 2. GENE NETWORK RECONSTRUCTION

2.1 Review of the Literature on Gene Network Reconstruction

Abstractly, inferring gene networks from biological experiments can be transformed to

a reverse-engineering problem. In engineering disciplines, reverse-engineering methods are

widely used to decode the design of a product such as a circuit, a software tool, etc., usually by

analyzing the behaviors of the product with varied inputs. Within the context of gene network

reconstruction, the biological “machine” is the product we want to study, while microarray

data reflects its system outputs. Figure 2.1 shows a high level view of the problem we try to

solve.

Figure 2.1 From Experiments to Gene Network [Gardner and Faith, 2005]

There are two major strategies for gene regulatory network reverse-engineering : the “phys-

ical approach” and the “influence approach” [Gardner and Faith, 2005]. The “physical ap-

proach” tries to use microarray expression data to identify the transcription factors (TFs)

and their corresponding binding sites on DNA, thus the objective is to infer the true physical

interactions between the TFs and the promoters of the regulated genes. The “influence ap-

proach”, on the other hand, has a broader definition of gene regulation: it is not necessarily
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carried by TFs and their binding site pairs, instead any “influence” among genes as reflected

by expression data could be captured.

Physical strategy usually involves rate-law kinetics and ultimately models gene transcrip-

tion as differential equations. It offers a relatively precise simulation of real-world transcrip-

tion processes, for example, it can describe a repressive interaction by a gradually decreasing

production rate, by using the differential equation we can calculate when will the mRNA con-

centration eventually decrease. The limitation of physical strategy is that it can only model

the regulatory control based on transcription factors [Gardner and Faith, 2005].

My research follows the methodology of the “influence approach” which is not restricted to

physical interactions. Previous works in this area can be further divided into four categories:

1. Association Networks

The most straightforward way to reconstruct gene regulatory network is to test all

pairwise statistical similarities of gene expression profiles; if a gene pair has a statis-

tical similarities greater than a predefined threshold, we conclude that they are depen-

dent, and consequently an edge is drawn between them in the resulted network. In

[Gardner and Faith, 2005], this class of methods are referred to as Association Networks.

A variety of similarity measurements have been adopted by previous works; for example,

Pearson Correlation [de la Fuente et al., 2004], Mutual Information [Margolin et al., 2006],

and the time-delayed cross-correlation coefficient of time-series microarray data

[Schmitt et al., 2004].

2. Differential Equation models

Gene network may be described as a system of differential equations. In general, let xi

denotes the expression level of gene i, the changing rate of xi is given by a function fi:

dxi

dt
= fi(x1, ..., xn) (2.1)

where n is the number of all genes to be studied. Among many representations of fi,

previous researches suggest that linear function is the most successful concrete format
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of fi [D’haeseleer et al., 1999, Gardner et al., 2003]. Using a linear function to represent

the changing rate, the differential equation is in the format of:

dxi

dt
=

∑
j

wijxj + pi (2.2)

where wij represents the influence of gene j on gene i. and pi is an externally applied

perturbation to the transcription level of gene i.

3. Boolean Network Models

In contrast to the differential equation models whose variables are continuous, Boolean

network simplifies gene expression levels to binary variables. Under the Boolean network

framework, a gene’s expression level only has two states: being “turned on” or being

“turned off”. The state of a particular gene xi at time t + 1 is determined by a Boolean

function fB
i of all states at time t:

xi(t + 1) = fB
i (x1(t), ..., xn(t)) (2.3)

where x1(t), ..., xn(t) are the states of all genes to be studied at time t.

The early works using Boolean Networks to reconstruct gene networks([Akutsu, 1999,

Liang et al., 1998, Ideker et al., 2000]) tried to find a single best Boolean function for the

given data, disregard the stochastic nature of biological phenomena. Later researches

addressed this problem by introducing a new model called the Probabilistic Boolean

Networks(PBNs) which combines the ideas of both deterministic Boolean Networks and

probabilistic theory [Shmulevich et al., 2002]. Instead of associating gene i’s state by a

single Boolean function fB
i , PBNs define a set of Boolean functions for a gene i, denoted

as:

Fi = f
(i)
j , j = 1, ..., l(i) (2.4)
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where f
(i)
j is a possible Boolean function for gene i, l(i) is the number of all possible

functions in the set Fi. For each possible function, there is a probability associated with

it to predict gene i’s state. Thus, a PBN is defined by a list of function sets F = F1, ..., Fn,

and a matrix of probabilities with each element cij denoting the probability that the jth

function is used to define gene i’s state.

2.2 Bayesian Networks

2.2.1 Introduction

My research focuses on using another kind of influence approach called Bayesian networks

for GRN reconstruction. A Bayesian network represents the joint distribution over a set of

random variables X = {x1, ..., xN} by directed acyclic graph (DAG). In this DAG, each node

represents a random variable xi, lack of edge between two nodes indicates that these two

variables are conditionally independent. On the other hand, if a node xi is connected, and let

Pai denotes all of its parent nodes according to the direction of edges, there is a Conditional

Probability Distribution (CPD) which can be represented as Pr(xi|Pai).

Figure 2.2 shows a simple example of Bayesian network. Suppose one day your neighbor

John calls to say the alarm in your house is ringing, but neighbor Mary doesn’t call. Sometimes

the alarm is set off by minor earthquakes. You want to know how likely that there was a

burglar. Figure 2.2 describes the following relationships among these five variables: ”Burglary”,

”Earthquake”, ”Alarm”, ”John Calls” and ”‘Mary Calls”’:

• A burglar can trigger the alarm

• An earthquake can trigger the alarm

• The alarm can cause Mary to call

• The alarm can cause John to call

The knowledge is quantified as conditional probabilities. Consequently, in addition to

the graph topology, another major component of Bayesian Networks is conditional probability
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Figure 2.2 Bayesian Networks - an example

Distribution (CPD) (or conditional probability Table (CPT) if variables are discrete) associated

with each variable. For example, the CPT in figure 2.2 tells us that if there was burglary, it

will very likely set off the alarm; however, on the other hand, the alarm can be set off by

earthquake with a much smaller probability.

Bayesian network is a compact representation of joint distribution, the compactness is

achieved by factoring the joint distribution into local conditional distributions for each variable

xi given its parents Pai:

Pr(x1, ..., xn) =
∏

i

Pr(xi|Pai) (2.5)

To describe the joint distribution over N variables, we need to store the probability of

every possible event as defined by the values of all the variables. There are exponentially many

such events, therefore the space complexity is O(2N ). In BN representation, if the maximum

number of parents is denoted as k, it is easy to see that the space complexity of Bayesian

network is O(2k ·N). Since k is usually a much smaller number than N , the space requirement

of Bayesian networks is much lower than the method which exhaustively enumerates all the

possible events.
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2.2.2 Dynamic Bayesian Networks

In many BN applications the conditional dependency among variables may change over

time. Dynamic Bayesian Networks (DBNs) [Dean and Kanazawa, 1990] was proposed to ex-

press certain transient features of BNs, here the term “dynamic” means we are modeling a

dynamic system, not that the network changes over time.

DBNs can be viewed as an extension of static BNs by introducing the concept of time slice.

In each time slice t, there are a fixed number N of variables Xti, where i = 1, ..., N , that are

only dependent on the variables in previous time slices 1, ..., t − 1. Assume t ranges from 1

to T , there are totally T × N variables in the DBN instead of N variables in its static BN

counterpart. For the sake of simplicity, we assume variables in time slice t are only dependent

on the variables in the immediately preceding time slice t − 1(i.e., the system is first-order

Markov), and the transition feature between time slices does not change. Hence two time

slices are enough to express the whole dynamic system.

Formally, a DBN is defined to be a pair, (B1, B→), where B1 is a BN which defines the

prior joint distribution, and B→ is a two-slice temporal BN (2TBN) which defines P (Xt|Xt−1)

by means of a DAG (directed acyclic graph) as follows:

P (Xt|Xt−1) =
N∏

i=1

P (Xi
t |Pa(Xi

t))

where Xi
t is the i’th node at time t, and Pa(Zi

t) are the parents of Zi
t in the graph. The nodes

in the first slice of a 2TBN do not have any parameters associated with them, but each node

in the second slice of the 2TBN has an associated conditional probability distribution (CPD),

which defines P (Xi
t |Pa(Xi

t)) for all t > 1. Figure 2.3 illustrates a simple 2TBN.

DBN is a generalized version of Hidden Markov Model (HMM) ([Rabiner, 1989]) and

Kalman Filter Model (KFM) ([Roweis and Ghahramani, 1999, Minka, 1999]). The difference

between a DBN and a HMM is that a DBN represents the hidden state in terms of a set of

random variables, Xt
1, . . . , X

t
Nh

, i.e., it uses a distributed representation of state. By contrast,

in an HMM, the state space consists of a single random variable Xt. The difference between a
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Figure 2.3 A simple 2TBN with 8 variables

DBN and a KFM is that a KFM requires all the CPDs to be linear-Gaussian, whereas a DBN

allows arbitrary CPDs. In addition, HMMs and KFMs have a restricted topology, whereas a

DBN allows much more general graph structures.

2.2.3 Advantages of using DBNs for GRN reconstruction

Traditional GRN reconstruction methods are based on pairwise correlations. However, as

Figure 2.4 shows, pairwise correlation cannot be used to rigorously prove or disprove that two

genes are related since two genes could be co-regulated by another gene or a subset of genes.

BN-based methods, on the other hand, reflect the combinatorial logic of all genes in the system

and can be used to find true relationships by given a larger context.

Figure 2.4 The high correlation between two genes’ expression profiles may
be explained by other genes

DBN is also an intuitive way for modeling gene regulatory networks. First, the directed

edges in BNs have advantages since they can be interpreted as reflecting causal relationships

[Murphy and Mian, 1999]. In biological data analysis, uncovering the causal relationships such

as “the activity of gene A causes the activity of gene B” is more desirable than the non-causal
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correlations.

Figure 2.5 Multiple time slice can be ”‘rolled”’ to a hyper-structure

Second, unlike static BNs that are acyclic, as Figure 2.5 shows rolled DBNs are cyclic. It is

known that regulatory loops are commonly present in the biological process, thus the outcome

of DBNs can better simulate gene regulatory mechanism.

2.3 Review of BN structure learning

Learning process in BN can be either parameter learning or structure learning. For pa-

rameter learning, the topology of the target BN is fixed, the task is to estimate the CPTs or

CPDs for every node in the network. On the other hand, if the topology is unknown, struc-

ture learning is required to learn the graph topology of the target BN before the parameters

could be determined. Also the observation data used for BN learning may be either complete

or incomplete, based on these varieties, [Murphy, 2002] categorized four scenarios of learning

structure of BNs.

2.3.1 Known structure, full observability

The goal of learning in this case is to find the the parameter values which maximize the

likelihood of the training data. The log-likelihood of the training set D = {D1, . . . , DM} is a

sum of the likelihood of each node by given the observational data Dm, network structure G

and its parent node Pa(Xi):

L = log
M∏

m=1

Pr(Dm|G) =
n∑

i=1

M∑
m=1

log P (Xi|Pa(Xi), Dm) (2.6)
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Next the task is to specify how to estimate the parameters of each type of CPD given its

local data {Dm(Xi, Pa(Xi))} by various supervised learning methods. Interested readers can

refer to [Murphy, 2002] for more discussion.

2.3.2 Known structure, partial observability

In the partially observable case, the log-likelihood is

L =
∑
m

log P (Dm)

=
∑
m

log
∑

h

P (H = h, V = Dm) (2.7)

where the innermost sum is over all the assignments to the hidden nodes H, and V = Dm

means the visible nodes take on the values specified by case Dm. Unlike the fully observed case,

the log-likelihood in this case cannot be decomposed into a sum of local terms. The output of

parameter estimation would be a distribution over the parameters. The most common method

for achieving this is to use Gibbs sampling [Geman and Geman, 1984, Gilks et al., 1996].

2.3.3 Unknown structure, partial observability

In the partially observable case, computing the marginal likelihood is intractable, requiring

that we sum out all the latent variables Z as well as integrate out all the parameters θ:

P (X|G) =
∑
Z

∫
θ
P (X, Z|G, θ)P (θ|G) (2.8)

This score is hard to compute, and does not decompose into a product of local terms.

Interested readers can refer to [Murphy, 2002] for more discussion on how to estimate the the

approximated distribution of P (X|G) .
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2.3.4 Unknown structure, full observability

In this dissertation we focus on the scenario where we want to learn the BN structure for

complete observational data. Next we introduce the most popular approach based on three

critical issues about the BN structure learning:

• What is the hypothesis space? This could be the space of DAGs, equivalence classes of

DAGs (PDAGs), undirected graphs, trees, node orderings, etc.

• What is the evaluation (scoring) function?

• What is the search algorithm? This could be either local search (e.g., greedy hill climbing,

possibly with multiple restarts) or global search (e.g., simulated annealing or genetic

algorithms).

2.3.4.1 Search space

DAGs The most common approach is to search through the space of DAGs. Unfortu-

nately, the number of DAGs on N variables is 2O(N2 log N) [Robinson, 1973],

[Friedman and Koller, 2000]. For example, there are 543 DAGs on 4 nodes, and O(1018) DAGs

on 10 nodes. This means that attempts to find the DAG which can best fit the data is practi-

cally impossible.

PDAGs One way to reduce the search space is to use PDAG (partially directed acyclic

graph) which represents a whole class of Markov equivalent DAGs. Two DAGs are Markov

equivalent if they imply the same set of conditional independencies. For example, X → Y → Z,

X ← Y → Z and X ← Y ← Z are Markov equivalent, since they all represent X ⊥ Z|Y .

In general, two graphs are Markov equivalent if and only if they have the same structure

(without considering directions of edges), and the same v-structures [Verma and Pearl, 1990].

(A v-structure consists of converging directed edges into the same node, such as X → Y ← Z.)

According to [Cooper and Yoo, 1999, Pearl, 2000], we cannot distinguish members of the same
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Markov equivalence class if we only have observational data, therefore to search in the space

of PDAGs can reduce the complexity without loosing accuracy.

2.3.4.2 Variable orderings

Another factor that may influence the search space in BN structure learning is variable

ordering. [Buntine, 1991] argues that by given a total ordering ≺, the likelihood decomposes

into a product of terms, since the parents for each node can be chosen independently.

P (D| ≺) =
∑

G∈G≺

n∏
i=1

score(Xi, PaG(Xi)|D)

=
∏

i

∑
U∈U≺,i

score(Xi, U |D) (2.9)

G≺ is the set of graphs consistent with the ordering ≺, and U≺,i is the set of legal parents

for node i consistent with ≺. If we bound the number of parents by k, each summation in

Equation 2.9 takes
n

k
≤ nk time to compute, so the whole equation takes O(nk+1) time.

Given an ordering, we can the find the best DAG consistent with that ordering using

greedy selection like the K2 algorithm [Cooper and Herskovits, 1992] does, or more sophisti-

cated variable selection methods. If the ordering is unknown, we can search for it by using

MCMC [Friedman and Koller, 2000]. However, the space of orderings has size N !, which is

still huge.

2.3.4.3 Search algorithm

The hill-climbing algorithm There are two kinds of search algorithms for the best

BN structure: local search and global search. For local search, first randomly select a graph

as the starting point, then apply an operator which modifies this graph. The operators that

move through space are usually adding, deleting or reversing a single arc; this defines the

neighborhood of a graph, nbd(G). As figure. 2.6 shows, the hill-climbing algorithm moves to

the neighbor with the best score, and continue this process until the score cannot be improved.
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Choose G somehow
While not converged

For each G′ in nbd(G)
Compute score(G′)

G∗ := arg maxG′ score(G′)
If score(G∗) > score(G)

then G := G∗

else converged := true

Figure 2.6 Pseudo-code for hill-climbing. nbd(G) is the neighborhood of
G, i.e., the models that can be reached by applying a single
local change operator.

Obviously, the hill-climbing algorithm is too aggressive hence may easily be trapped in a

local minima/maxima. Global search algorithm, on the other hand, attempt to find the global

minima/maxima. In next section we briefly outline one global search algorithm called PC

algorithm.

The PC algorithm For global search, one popular algorithm is called PC algorithm

[Spirtes et al., 2000, Pearl and Verma, 1991, Pearl, 2000, p84] which can find the globally op-

timal PDAG in O(Nk+1Ntrain) time, where there are N nodes, Ntrain data cases, and each

node has at most k neighbors. The algorithm works as follows: start with a fully connected

undirected graph, and remove an arc between X and Y if there is some set of nodes S satisfying

X ⊥ Y |S; at the end, we can orient some of the undirected edges, so that we recover all the

v-structures in the PDAG.

The PC algorithm will provably recover the generating PDAG if the conditional inde-

pendence (CI) tests are all correct. For continuous data, we can implement the CI test using

Fisher’s z test; for discrete data, we can use a χ2 test [Spirtes et al., 2000, p95]. A major draw-

back of the PC algorithm is that testing if X ⊥ Y |S for discrete random variables requires

creating a table with O(K |S|+2) entries, which requires a lot of time and samples.
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2.3.4.4 Scoring function

By Bayes’ rule, the MAP model is the one that maximizes

Pr(G|D) =
Pr(D|G) Pr(G)

Pr(D)

where P (D) is a constant independent of the model. Consequently:

P (D|G) =
∫

θ
P (D|G, θ)P (θ|G)

Then we can combine the marginal likelihood with a structural prior to get:

score(G)def=P (D|G)P (G)

If we assume all the parameters are independent, the marginal likelihood decomposes into

a product of local terms, one per node:

P (D|G) =
n∏

i=1

∫
θi

P (Xi|Pa(Xi), θi)P (θi)

def=
n∏

i=1

score(Pa(Xi), Xi)

Under the assumptions of global and local parameter independence each of these integrals

can be performed in closed form, so the marginal likelihood can be computed very efficiently. If

the priors are not conjugate, one can try to approximate the marginal likelihood. For example,

[Heckerman, 1998] shows that the approximation to the parameter posterior has the form

log Pr(D|G) ≈ log Pr(D|G, θ̂G)− d

2
log M

where M is the number of samples, θ̂G is the ML estimate of the parameters and d is the

dimension (number of free parameters) of the model. This is called the Bayesian Information

Criterion (BIC), and is equivalent to the Minimum Description Length (MDL) approach. The

first term is just the likelihood and the second term is a penalty for model complexity.
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The BIC score also decomposes into a product of local terms:

BIC-score(G) =
∑

i

∑
m

log P (Xi|Pa(Xi), θ̂i, Dm)− di

2
log M

=
∑

i

∑
jk

Nijk log θijk −
di

2
log M (2.10)

where di = qi(ri − 1) is the number of parameters in Xi’s CPT.
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CHAPTER 3. METHODS AND PROCEDURES

3.1 Background

3.1.1 DBN structure learning

With the observational data in hand (in our case the microarray data), our goal is to find

a DBN structure which most likely generates this data. Constructing BNs without the prior

knowledge of the network structure is generally a hard problem which has stimulated consider-

able research effort, beside a brief review of related literature in the Chapter 2 of this disserta-

tion, much details on this topic can also be found in [Friedman et al., 1998, Heckerman, 1995].

Here we rephrase the commonly used structure learning approach. Our task is to find a net-

work structure G which maximizes the likelihood by given the observational data D, we denote

it as scoring function Pr(G|D), using Bayes’ Theorem, we have:

log Pr(G|D) = log Pr(D|G) + log Pr(G) + c (3.1)

where c = Pr(D) is a constant and can be ignored, Pr(D|G) is the likelihood that G

generates D, and Pr(G) is commonly referred to as structural prior.

The term log Pr(D|G) can be further approximated by Bayesian Information Criterion(BIC)

[Schwarz, 1978], which is defined as:

log Pr(D|G) ≈ log Pr(D|G, Θ̂G)− d

2
log N (3.2)

where Θ̂G denotes the estimated parameters by Maximum Likelihood (ML) method. Since

more complex network structures tend to have greater log Pr(D|G) values, the term d
2 log N is
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used to penalize the over-complex structures. Here N is the number of samples, and d denotes

the dimension of the model. In the rest of this chapter, we refer the likelihood Pr(G|D)

computed by equations (3.1) and (3.2) as BIC score.

3.1.2 Data integration for learning gene network structure

3.1.2.1 Integrate quantitative biological knowledge

If there is no prior knowledge on any structure G, the second term Pr(G) in equation

(3.1) is taken unbiased, that is, every G has the same likelihood thus the score in this situa-

tion is equivalent to Pr(D|G). On the other hand, if the network structure prior is present,

Pr(G) can be used to encode it and thus affect the structure learning process. There are

different ways to incorporate the structure prior in terms of Pr(G). If the prior knowledge

has a quantitative form, it can be naturally expressed in Pr(G); for example, the work re-

ported in [Bernard and Hartemink, 2005] make Pr(G) to be a continuous function of p-values

of transcription factor binding locations, their method can be briefly described as follows.

The evidence of regulatory relationship between a transcription factor and genes is re-

ported as a p-value, the smaller the p-value, the more likely the edge is to exist in the true

structure. First let us denote the true gene network structure as S, and define the p-value

for the location data corresponding to edge Ei in terms of random variable Pi defined on the

interval [0,1]. In this interval, Pi has been previously assumed to be exponentially distributed

([Segal et al., 2001]) if the edge Ei is present in S, and uniformly distributed if the edge Ei is

absent from S (by the definition of a p-value). Formally, we have

Pr
λ

(Pi = p|Ei ∈ S) =
λe−λp

1− e−λ
(3.3)

where λ is the parameter controlling the scale of the truncated exponential distribution.

Let β denote Pr(Ei ∈ S), by using bayes rule, the probability that edge Ei is present after

observing the corresponding p-value is:

Pr
λ

(Ei ∈ S|Pi = p) =
λe−λpβ

λe−λpβ + (1− e−λ)(1− β)
(3.4)
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Hence we can compute the cut-off p-value p∗ by solving the equation Prλ(Ei ∈ S|Pi =

p∗) = Prλ(Ei /∈ S|Pi = p∗). The result is:

p∗ =
−1
λ

log(
(1− e−λ)(1− β)

λβ
) (3.5)

For any fixed value of λ, if the p-value is below the critical p-value p∗, then the corresponding

edge is more like to present.

Obviously, this method depends on the availability of p-values, which can not be provided

by the qualitative evidences as we have discussed above.

3.1.2.2 Integrate qualitative biological knowledge

Some other biological evidences are not quantitative in nature, to make use of them, one

straightforward way is to manually convert them to numbers beforehand. Some examples

using manual quantification include [Imoto et al., 2003] and [Nariai et al., 2004]). Under the

framework of BN, we can let domain experts assign the values of Pr(G) for several favored

structures based on their knowledge, and leave the other structures with Pr(G) = 0.

The applicability of this approach is limited by the availability of domain experts, and

the credibility of their judgment. In fact, even domain experts may not be able to quantify

their own knowledge [Druzdzel and van der Gaag, 1995]. One previous research effort that

seeks automatically integrate qualitative biological data is reported in [Kato et al., 2005], their

major idea is summarized below.

To simplify the notation we assume there are one major adjacency matrix Q and one

auxiliary adjacency matrix P. Q can be further divided as:

Q =

 KI Qvh

QT
vh Qhh


where KI is determined by qualitative evidences (or training network in terms of machine

learning) using the diffusion kernel [Kondor and Lafferty, 2002]. P is derived from biological

data, e.g. microarray data. Our goal is to predict the sub-matrix Qvh and Qhh which represents
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the unknown part of network.

Next the Kullback-Leibler (KL) distance between P and Q is calculated as follows:

D[Q, P ] =
1
2
trP−1Q +

1
2
log detP − 1

2
log detQ− 1

2
l (3.6)

where l is the number of nodes. Then the task of estimating Qvh and Qhh becomes to an

optimization problem:

minQvh,Qhh
D[Q,P ] (3.7)

[Kato et al., 2005] offered an approximate solution to solve this problem based on expectation-

maximization (EM) [Dempster et al., 1977].

The method introduced by [Kato et al., 2005] is kernel-based and inherently does not con-

sider the direction of the edges in the constructed network. [Wittig and Jameson, 2000] pro-

posed a method based on BN and addressed the data integration problem by introducing the

concept of “violation function”. Intuitively, if given a set of qualitative assertions such as “if

variable A increases, then variable B increases”, the violation function sums up the occurrences

of all violations in the observational data against these qualitative assertions, and assigns it to

Pr(G) to penalize the structures with more violations. Interested readers can refer to Appendix

A of this dissertation for a summary of rigorous definition of violation function.

Our method adopts the methodology of violation function which seeks the automatic

and objective quantitative representation of qualitative evidences from data. The work in

[Wittig and Jameson, 2000] simply counts all the violations of a predefined monotonic trend,

therefore it can only work for static BNs. We extend it by treating variables as time-series

signals that may fluctuate over time, hence our method is suitable to be integrated into DBN

framework.

3.1.3 Cross-correlation function

It is possible that the influences among genes may take effect after a certain amount of

time. Consider gene A and gene B’s expression intensity in Figure 3.1. Although there is not
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much similarity of their expression intensity at each time point, if we shift one of them along

the time axis, we can make two contours almost perfectly match, therefore we can say that

these two genes are strongly correlated with a certain time lag. Moreover, the direction of

this time shift can reveal the causal relationship in addition to the correlation. For example,

because we need to move gene B toward left to make the best matching, data shown in figure

3.1 is a good evidence that gene A regulates gene B, but not vice versa.

Figure 3.1 Time shift between two series. Axis t denotes time, axis E
denotes gene expression level.

To numerically capture the causal relationships involving time shift, we propose using cross-

correlation function(CCF) to assess the correlation of two gene expression profiles in time-series

microarray data. CCF is a standard time-series analysis tool which is widely used in digital

signal processing [Jenkins and Watts, 1969]. It has also been successfully applied in time-series

microarray data analysis [Schmitt et al., 2004]. Taking the time lag between two time series

as input, a CCF quantifies the similarity between these two time series. Formally, assume

the experiments were taken at a series of time points ti, where i = 1, ..., n, and the intervals

between two successive time points are fixed, we define this unique interval as ∆t = ti − ti−1.

The definition of the CCF of two time series X and Y is:

CCF (X, Y, τk) =
1
N

∑N−k
i=1 (xi − x̄)(yi+k − ȳ)√

1
N

∑N
i=1(xi − x̄)2 ·

√
1
N

∑N
i=1(yi − ȳ)2

(3.8)

where xi and yi are the ith element of series X and Y , τk = k ·∆t is the time lag, x̄ and

ȳ are the means of X and Y , and N is the total number of time points in the time series.

In practice, tl should be a small number comparing to the length of the time series N , since
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standard CCF sums up shifted difference xi − x̄ and yi+k − ȳ for N − k times, a small N − k

value makes the CCF value small and statistically insufficient.

In our specific application domain, all of the time series are precisely synchronized since

a single microarray experiment measures every gene’s expression level simultaneously. As a

result, the concrete value of time interval ∆t is not critical in the correlation analysis. For the

sake of simplicity we ignore ∆t, thus in our computation τk is replaced by the indexing number

k.

3.2 Novel model

In this research we are specifically interested in integrating qualitative information in prob-

abilistic models to learn gene network. In particular, we formalize our method as a supervised

learner as shown in Figure 3.2. In machine learning, unsupervised learning is a method where

a model is fit to observations, there is no a priori outputs. On the other hand, Supervised

learning tries to create a model from training data. The training data consist of pairs of input

objects, and desired outputs. The output of the function can be a continuous value (called

regression), or can predict a class label of the input object (called classification). The task of

the supervised learner is to predict the value of the function for any valid input object after

having seen a number of training examples.

Figure 3.2 Supervised learning for gene regulatory networks
0Our novel model together with the experimental results are also reported in [Li, 2007] “Integrate qualita-

tive biological knowledge to build gene networks by parallel dynamic bayesian network structure learning. In
Proceedings of IEEE 7th International Symposium on Bioinformatics & Bioengineering (BIBE 2007)”.
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The gene interactions from the previous biological knowledge constitute the training net-

work, which is considered correct. Combining it with the microarray data, we seek to achieve

a better prediction of the rest of the network. To our knowledge, this work is the first attempt

to integrate qualitative evidence by DBNs.

First we make two additional operations based on the standard CCF so that it can be

used in the DBNs structure learning. First, we only consider the magnitude of the correlation

among genes to score a DBN structure since the polarity of the causal effects is not a factor

in structure scoring. That is, if there exists an edge A→ B in a BN structure, it could reflect

either positive or negative regulatory pattern from gene A to gene B. Second, different values

of time lag parameter k lead to different CCF results, but it is the best value which represents

the similarity of two series. Since which k value produces the best CCF value is not known a

priori, we need to perform a search process for a best k value within a range. Combining these

two new operations, we define a function bestCCF as:

bestCCF (X, Y, tl) = max(abs(CCF (X, Y, k))), k = 0, ..., tl (3.9)

where tl is a predefined maximum time lag, bestCCF tries the time lags from zero to tl

and output the best CCF value.

The qualitative evidences used by our method can be viewed as a set of edges, so we denote

this set as R. We further define another set nL(R) which contains all the edges outside R that

connect to any node in R. For example, consider the 6-node structure in figure 3.3, and suppose

edges drawn with solid lines agree with the qualitative prior knowledge set R, that is, edges

(A,B), (A,C) and (B,C) ∈ R. The nodes in R, consequently, are A,B, C. Next consider edges

(A,D), (B,E) and (F,C) drawn with dashed lines, they are not in R but each of them connects

to a node in R, therefore, nL(R) = {(A,D), (B,E), (F,C)}.

With these definitions, we propose a scoring function for an individual edge (X,Y) as follow:
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Figure 3.3 Neighboring nodes. (A,B), (A,C) and (B,C) ∈ R, (A,D), (B,E)
and (F,C) ∈ nL(R)

edgeScore(X, Y ) =



α · bestCCF (X, Y, tl), (X, Y ) ∈ R

β · bestCCF (X, Y, tl), (X, Y ) ∈ nL(R)

−γ · bestCCF (X, Y, tl), otherwise

(3.10)

α, β and γ are positive constants that define the weight of the bestCCF (X, Y ) in our new

scoring scheme. The idea of edgeScore is to award or penalize an edge (X,Y) according to

the prior knowledge R and nL(R). If (X,Y) is part of the prior knowledge set R, its existence

is directly supported by the prior knowledge. Since it is well known that gene networks are

”small world” networks, thus a node is more likely connecting to some nodes that are already

connected. Therefore, if (X,Y) connects to R, it also can be considered supported by the prior

knowledge indirectly. On the other hand, if the first two cases are not met, then (X,Y) is not

supported by the prior knowledge and a negative score is given to penalize certain structure.

Here we do not force our BN structure learning method to include the edges in R into its

output based on the assumption that the qualitative prior knowledge, though considered more

reliable than the microarray data, still cannot be completely trusted. As a result, we quantify

the belief that edge (X,Y) should exist by bestCCF . If the value of bestCCF is small but

(X, Y ) ∈ R or (X, Y ) ∈ nL(R), then the prior knowledge contradicts with the microarray

data, a positive award score still will be given in this case but the bias is not significant; for

the same reason, if the value of bestCCF is small, the absence of (X,Y) in R will not lead to

a great penalty of the structure.



www.manaraa.com

34

The structure prior Pr(G) is the summation of the edgeScore for all edges:

Pr(G) =
∑

(X,Y )∈G

edgeScore(X, Y, tl) (3.11)

Substitute (3.11) into (3.1), we get the biased score for integrating additional qualitative

evidences.

3.3 Implementation

Ideally, by assessing the BIC score of every possible network structure, we can find the

one which fits the data best. However, finding the best solution is computationally intractable

[Chickering et al., 1994]. For this reason, in our implementation the equations developed in

the previous sections are not computed in their exact format. Instead, we apply the score

computation within a greedy search strategy to find a near-optimal solution with reasonable

computational cost. The algorithm below outlines the standard greedy strategy:

0The software implementing our model can be downloaded from http://www.complex.iastate.edu
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Start with:

a random structure G,

a BIC scoring function score(·), and

a pre-defined threshold t ;

while true do

for every offspring G′
n of G do

compute score(G′
n);

end

Find one structure Ĝ′ which has the highest score among offsprings;

if score(Ĝ) - score(G) > t then

G ← Ĝ′;

else

output Ĝ;

stop;

end

end

The offspring G′ is the set of all results of one-change operations on the original graph G.

There are three types of such operations:

• delete an existing edge in G

• add an edge to G

• reverse the the direction of an edge in G

In each iteration, the score of every one-change offspring is computed and the one with the

best score is selected. If it cannot improve the score of the parent graph G significantly, i.e., the

score difference between the best offspring and the parent is less than a predefined threshold

t, the algorithm decides that the maxima/minima has been reached and stops, in the other

words, the algorithm converges. Obviously this greedy search strategy may be trapped into a

local maxima/minima, so in practice we restart the search multiple times with random initial

starting graphs G, and select the graph with the best final score among these executions.



www.manaraa.com

36

To adapt with this greedy search strategy, we decompose the scoring method depicted by

equation (3.10) into three functions. Each function adjusts the score not only based on the

attribution of the edge, but also the specific change operation made in one iteration:

score′add =


score + α · bestCCF (X, Y, tl), (X, Y ) ∈ R

score + β · bestCCF (X, Y, tl), (X, Y ) ∈ nL(R)

score− γ · (1− bestCCF (X, Y, tl)), otherwise

score′delete =


score− α · bestCCF (X, Y, tl), (X, Y ) ∈ R

score− β · bestCCF (X, Y, tl), (X, Y ) ∈ nL(R)

score + γ · (1− bestCCF (X, Y, tl)), otherwise

score′reverse =

score− α · dirDiff, (X, Y ) ∈ R

score (X, Y ) /∈ R

The subscription of each function refers to the type of changes it associates with. score

is the Pr(D|G) value of the parent structure G. For an add operation, the score adjustment

function adds an awarding score if the added edge agrees with the prior knowledge, and takes

a penalty score if not. For a delete operation, the adjustment function acts in exactly the

opposite way. For a reverse operation, assume the direction before the change is X → Y , we

compute the difference in bestCCF as in equation (3.12), and use it to encourage or discourage

this reverse operation:

dirDiff = bestCCF (X, Y, tl)− bestCCF (Y, X, tl) (3.12)

We use OpenPNL (https://sourceforge.net/projects/openpnl/), an open source C++ li-

brary on graphical models developed by Intel Corporation, to perform the standard greedy

search algorithm. In addition our model takes qualitative evidences and insert the score ad-

justment model described above in each iteration in the algorithm to influence the outcome of

the structure learning algorithm.
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Figure 3.4 System diagram. Components drawn as rectangles are our en-
hancements models inserted into the standard greedy search
algorithm.

3.4 Parallel BN structure learning

Although BNs have many advantages, it is difficult to use them to predict large network

because of its intensive computational cost. Theoretically it has been proved that BN structure

learning is NP-hard [Chickering et al., 1994]; in practice some heuristics are developed to solve

the problem in polynomial time, however because of the large search space, the heuristics will

run very slow once the number of nodes becomes large.

Unfortunately, most of the previously published research works which reconstruct gene

networks using BNs primarily emphasize on the theoretical models, while the scalability

and usability of their models were seldom addressed. Comparing to the models based on

pairwise analysis that usually have thousands of nodes, most previous works based on BNs
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only built gene networks in the scale of 20-30 nodes. A previous research effort reported

in[Yin et al., 2004] tried to use parallel computing for learning gene regulatory networks, how-

ever, [Yin et al., 2004] did not provide any result.

In order to speed up the computation, our implementation parallelize the structure learning

process so that it can make use of multiple CPUs, as shown in Figure 3.5.

Figure 3.5 Parallel BN structure learning

We usually need to restart the greedy algorithm multiple times with random initial graph,

these multiple executions are independent thus can be parallelized. Each process takes a

portion of total number of executions, once it is done it reports the score via pipe to a pre-

assigned controller. The controller gathers all reported score and find a best one, then instruct

the correspondent process to output its network, and the other processes to stop silently.

In chapter 4, we show that by using parallel computing, our model can be used to generate

larger gene networks. We build a network with 188 actual nodes in our experimental study.

To our knowledge, our work is the first BN-based research effort reported to date which can

generate gene networks with such scale.



www.manaraa.com

39

CHAPTER 4. RESULTS

4.1 Data

We use the publicly available Saccharomyces cerevisiae cell-cycle gene expression dataset

published by [Spellman et al., 1998] to evaluate our method. The dataset contains 79 gene

expression measurements of 6177 genes. These 79 measurements were conducted under four

synchronization protocols. Table 4.1 summarize these four protocols:

Table 4.1 Summary of the microarray dataset published by
[Spellman et al., 1998]

CDC15 CDC28 ALPHA ELU

# of data points 24 17 18 14

The pre-processed data are downloaded from the paper companion website http://cellcycle-

www.stanford.edu. Next we created two test cases:

• A network with 25 genes, including 14 well known transcription factors, and 11 related

regulatees. By using MPact [Guldener et al., 2006] on the MIPS website [Mewes et al., 2000],

we found 30 interactions among these genes which constitute a reference network. In the

rest of this chapter we refer to it as the small test case.

• We use the result from [Simon et al., 2001] which has 94 genes and 209 interactions as

the reference network. In the rest of this chapter we refer to it as the large test case.
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The detailed gene and interaction lists of these two test cases can by found in the appendix

B. The reference networks are considered to be correct and are used to evaluate the accuracy

of our model. For the purpose of evaluating our supervised learner, we pretend to only know

a part of the reference network, we call it training network in terms of machine learning.

Consequently, the rest of edges in the reference network constitute the validation network

which is unknown to the learning algorithm.

Figure 4.1 Reference Gene Network containing 25 genes and 30 interac-
tions. 6 edges drawn in bold font: (SWI4, CDC42), (SWI4,
CDC45), (SWI4, DEP1), (SWI4, PHO85), (PHO85, UME6)
and (UME6, CHS6) form the training network

4.2 Experiment Setting

To evaluate the performance of our novel method, we conducted a comparative experiement.

Three methods are used to generate gene networks:
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• Randomly generate network topologies by a simulator. The result networks is con-

strainted by degree upper bound. i.e. every node in the result networks has no more than

a certain number of edges. This method provides a “ground” performance standard. In

the rest of this chapter we refer to it as random method.

• Our proposed new method. In the rest of this chapter we refer to it as supervised

method.

• The standard DBNs which only takes microarray data. In the rest of this chapter we

refer to it as unsupervised method in contrast to our method.

The two DBN related methods have the same settings and input data except that the

supervised BN method uses the additional score adjustment function.

4.3 Results

4.3.1 Accuracy

We repeat the random method for 500000 times and take the average number of correctly

predicted edges. Since it does not take microarray data, there are two cases to consider: for

the small reference network, the average number of correct prediction is 6.77. For the large

reference network, the average number of correct prediction is 3.71. The worse performance

in case of large reference network can be explained by the sparseness of the network, despite

the fact that there are more edges in the reference network.

For the DBN related methods, because the greedy search algorithm can only find sub-

optimal network structures, and different network structures can have the same or very close

scores which is known as “equivalence classes” [Chickering, 2002] of Bayesian network, the

number of edges found in the validation network may also differ from time to time. To compare

the performance of the two methods under this circumstance of uncertainty, we repeatedly run

supervised and unsupervised methods on two test cases for 100 times each, and compare the

average number of edges found in the validation network. To ensure the objectiveness of the
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performance comparison, we only count the edges found in the validation set which is unknown

to both methods. Table 4.2 shows the results of the supervised and unsupervised methods.

Here the sensitivity is defined as:

sensitivity =
True Positive

True Positive + False Negative

where True Positive is the number of edges in the validation network that are correctly

predicted, True Positive + False Negative is the total edges in the validation network.

The values of α, β and γ are selected so that the sensitivities are maximized, Table 4.3 lists

the details. Since BN structure learning process is influenced only by BIC score differences of

BN structure candidates, to reduce the computational cost of searching best parameters, we

fix γ to 0.1. The number of random restarts is 60, the maximum time lag tl is 3.

With the additional knowledge of only a small portion of the whole reference network as the

training network, our method significantly improves the sensitivity of prediction in both test

cases. The low sensitivities in the large case is conceivable since the number of genes is almost

4 times of the number of samples, makes this case severely under-sampled. However, as shown

in Table 4.2, in any dataset and test case combination, comparing to the unsupervised method,

supervised method can always improve the sensitivity by up to 30%. Methods using DBNs

outperform the random method in almost every case, especially with large reference network,

the advantage of using DBNs and microarray data is overwhelming over merely guessing.

The awarding score for edges in nL(R) is not the only reason for the accuracy improve-

ment. By studying the resulted networks of the small case, we found that the performance

improvement is mainly contributed by 5 edges that were found much more frequently by the

supervised method, Table 4.4 shows the detail. Two of these edges: ATP14 → SUB1 and

SWI5 → MSN5, do not connect to the training network. Therefore, the successful prediction

of them cannot be directly explained by the award score in our method. The score adjustment

mechanism driven by the training network has to be working in concert with the standard

DBNs method based on microarray data to make these correct predictions.
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Table 4.2 Performance comparison

dataset test case method edges found in total number sensitivity sensitivity
validation set of edges improvement

cdc15 Small Unsupervised 8.88 68.2 37% 29.0%
Supervised 11.45 68.8 47.7%

Large Unsupervised 11.86 400.5 7.6% 30.5%
Supervised 15.48 394.6 9.9%

alpha Small Unsupervised 5.90 74.1 24.6% 19.5%
Supervised 7.06 80.5 29.4%

Large Unsupervised 11.61 335.7 7.6% 32.0%
Supervised 15.32 431.2 10.0%

cdc28 Small Unsupervised 4.89 80.7 20.4% 16.7%
Supervised 5.70 81.4 23.8%

Large Unsupervised 12.00 325.8 7.8% 22.5%
Supervised 14.70 401.7 9.6%

elu Small Unsupervised 7.80 77.2 32.5% 13.2%
Supervised 8.83 79.4 36.8%

Large Unsupervised 11.47 331.1 7.5% 33.7%
Supervised 15.36 414.7 10.0%
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Table 4.3 Parameter selections

dataset test case alpha beta

cdc15 Small 2.4 2.55
Large 3.5 3.2

alpha Small 1.6 1.9
Large 1.2 1.9

cdc28 Small 2.3 3.3
Large 3.2 2.8

elu Small 1.3 4.9
Large 1.7 1.5

Table 4.4 Contributors of the performance improvement

occurrence in occurrence in
Supervised BN unsupervised BN

SIN3 → UME6 83 0
ATP14 → SUB1 79 1
SWI5 → CDC45 85 42
SWI5 → MSN5 88 55
SWI4 → SHS1 91 49
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4.3.2 Consistency

First we use the standard deviation of the number of correctly predicted edges as a mea-

surement of consistency. Table 4.5 shows the results. Since the number of correctly predicted

edges have different averages, to make the comparison fair, we use supervised method as the

base, and adjust the standard deviation of the other two methods against it. As we can see

from table 4.5, our method has smaller standard deviation in every case, and the random

method performed the worst.

We also have an interesting finding that with certain parameter settings, the results of

our method are very consistent on specifically a set of edges over repeated experiments. To

illustrate this, we counted occurrences of every distinct edge in the result networks of 100

experiments, and summarize the number of edges in five occurrence ranges. The result is given

in Table 4.6.

As shown in Table 4.6, both supervised and unsupervised methods have almost the same

number of edges that are found just a few times, i.e., in the range of 1-19. Other than these,

there is a significant difference in the way the numbers of edges are distributed into the other

four ranges. For the unsupervised method, these edges are relatively evenly distributed. For

our supervised method, a dominant majority, 68 out of 73 edges are found more than 80 times,

and there is no edge found between 20 times to 59 times!

Figure 4.3.2 summarizes the number of all occurrences for each range. Clearly for supervised

method most occurrences of edges fall into the range of 80-100 times, but for unsupervised

method the occurrences are also evenly distributed. This shows that our method tends to

converge to a few very similar network structures, while the results of unsupervised method

are by far more diversified. It is conceivable that the fewer similar networks are more likely to

resemble the correct gene network than a diversified set that are dissimilar.

4.3.3 Performance of the paralell implementation

Our parallel BN structure learning program is tested on a system with 4 AMD Opeteron

CPUs, we also run the serial code performing the same computation on single CPU to compare
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Table 4.5 A comparison of standard deviations – The standard deviations
of Random networks and Unsupervised method are justified re-
garding to the supervised method, the original standard devia-
tion values are given in parentheses

dataset test case Random adjusted Unsupervised adjusted Supervised
(original) (original)

cdc15 Small 3.578 1.634 1.239
(2.116) (1.267)

Large 8.120 4.008 3.647
(1.965) (3.072)

alpha Small 2.207 1.784 1.689
(2.116) (1.493)

Large 8.113 4.027 3.333
(1.965) (3.051)

cdc28 Small 1.782 1.745 1.618
(2.116) (1.495)

Large 7.785 3.798 3.356
(1.965) (3.100)

elu Small 2.759 2.139 1.659
(2.116) (1.890)

Large 8.135 4.649 3.477
(1.965) (3.477)
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Table 4.6 Number of edges in 5 groups according to their occurrences

range 80-100 60-79 40-59 20-39 1-19

Supervised 68 5 0 0 330
Unsupervised 20 28 24 45 321
Ratio 3.4 0.18 0 0 1.03

Figure 4.2 Weighted edge counts
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the performances. The results are summarized in table 4.7:

Table 4.7 Running time comparison

Parallel Serial Ratio

Supervised 179.23 sec 556.5 sec 3.10
Unsupervised 179.56 sec 549.68 sec 3.06

Every running time in table 4.7 is the average of 100 executions. Despite some synchro-

nization overhead, our parallel code can speed up the computation by approximately 3 times.
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CHAPTER 5. RECONSTRUCTING GENE NETWORKS USING

SHORT-TIME CORRELATION

5.1 Background

The usage of CCF in Chapter 3 tries to capture the linear relationships between entire

expression profiles. However, the real gene interactions usually happen within specific time

periods and conditions. For example, the development of a yeast cell can be divided into four

stages: G1, S, G2 and M as illustrated in figure 5.1. Some genes will only be “turned on”

during a specific stage, therefore the expression of these genes may show a strong pattern only

in a relatively short period of time. If we compute CCF of the entire gene expression profiles

such short-duration interactions might be missed.

Figure 5.1 Yeast cell cycle

As figure 5.2 shows, if there exists regulatory relationship between two genes, it is possible

that such relationship may be reflected by a part of expression profile. To capture the short-

time high correlation region, we need to define a sliding window so that partial expression
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Figure 5.2 Using sliding window for time-series microarray gene expression
data

data will be used for computing correlation, while the rest of expression data (possibly low

correlation region) will be ignored.

In this chapter, we develop a new model which combines short time correlation and DBN

to integrate biological data in addition to the microarray data to improve the performance

of network inference in terms of both accuracies and computational cost. In our new model

we add window size as another parameter for the CCF calculation, thus only a portion of the

time-series (the length is adjustable) is used for CCF calculation. We applied the new model

on yeast cell cycle microarray expression data and compare the accuracy of the predicted gene

networks with those produced by standard DBN methods. The results show that our model

outperformed the method without considering sliding window by finding gene interactions

whose sub-sequences produce the highest correlation. 1

5.2 Method

We adopt the correlation formula developed by [Du, 2005] which consider sliding window.

In short-time correlation, a slide window function is multiplied with the expression profiles.

Time correlation is computed over the profiles under the nonzero window function. The short-

time correlation coefficient can be defined as:
1Collaborated with Tian Xia and Pan Du
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rijmM (τ) = rijmM (l∆t) = cov(x′imM , x′jmM )/
√

var(x′imM )var(x′jmM ) (5.1)

where

x′imM [k] = wM (k −m)xi[k], x′jmM [k] = wM (k + l −m)xj [k + l],

k = 1, · · · , N, m = 1, · · · , N, 1 ≤ k + l ≤ N

wM (k) =


1, −[M/2] ≤ k ≤ [M/2]

0, otherwise

(5.2)

rijmM (τ) represents short time correlation coefficient between expression profiles Xi and

Xj with time delay τ , window size M at time frame m, m is the time index where the center

of window function is located, M is the size of the window function Wm(k), τ is the time

shift between gene profiles Xi and Xj , τ = l∆t, ∆t is the sample interval, l is the number

of sample intervals shifted between two profiles, N is the profile length. For periodic time

profiles, circular time correlation is effective, i.e., the time points at the end of the time series

are rewound to the beginning of the series after time shifting. The estimation of time delay τ

and edge direction during time interval m is exactly the same as time correlation. Since the

window size is changeable, in order to make the time correlation with different window size

comparable, we translate all the short-time correlation coefficients rijmM (τ) as p-values. To

simplify the notation, in the rest of this chapter, we use p-value in the rest of this chapter to

denote the measurement of short-time correlation coefficients.

Suppose the p-value between two time-series profile is written as pV alue(Xi, Xj , tl, w),

where Xi and Xj are time series, w is window size, tl is the time shift. We further define a

function bestPV alue returning the minimum of p-values with difference window size:

bestPV alue(Xi, Xj , tl) = min(pV alue(Xi, Xj , tl, w)), w ∈W (5.3)
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where W is the set of all valid window sizes.

Next we use 1/bestPV alue as a substitution of bestCCF defined in equation 3.9, conse-

quently the scoring function in chapter 3 is changed to:

edgeScore(X, Y ) =



α · 1/bestPV alue(X, Y, tl), (X, Y ) ∈ R

β · 1/bestPV alue(X, Y, tl), (X, Y ) ∈ nL(R)

−γ · 1/bestPV alue(X, Y, tl), otherwise

(5.4)

This scoring function is used in the same procedure described in chapter 3 for gene network

reconstruction.

5.3 Experimental study

5.3.1 Data

We used the public yeast (Saccharomyces cerevisiae) mitotic cell cycle data set [Cho et al., 1998].

The data was synchronized by arresting cdc28-13 cells in late G1. 17 time points with 10 min

intervals were collected. The Affymetrix Genechip was used for measuring mRNA accumu-

lation levels. Our analysis was based on 140 genes listed at the paper companion website,

including both cell cycle TFs (Transcriptional Factor) and their target genes. The rela-

tionships between the TF and the target genes were identified using genome-wide location

analysis[Simon et al., 2001].

We selected 20 genes from the dataset, by studying the previous biological literature we

constructed a reference network shown in Figure 5.3. The edges in reference network are

considered reliable and therefore the target of network inference models.

5.3.2 Result

We first compute the bestPV alue for every gene pair, and record the time shift and window

size associated with this best p-value. Table 5.1 shows the details about all 15 edges in the
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Figure 5.3 Reference network. Every edge indicates an interaction re-
ported by literature.

reference network. Since there are 17 data points in our microarray dataset, the maximum

window size is 17. To prevent the unreliable result produced by very short sequences, we limit

the window size in the range of 10 to 17. There are 5 gene pairs in Table 5.1 (YBR138C

– YGR092W, YOR372C – YPR119W, YBR133C – YJL187C, YER111C – YDL056W and

YJR092W – YML064C) have bestPV alue produced by window size smaller than 17, which in-

dicates that partial time sequence sometimes can better capture the likeliness of two microarray

profiles.

Next, we use these 5 edges as qualitative evidence in the aforementioned data integration

model, and use p-values in Table 5.1 as bestPV alue in equation 5.4 to quantify them. In case

the p-value is 0, we set a large number for 1/bestPV alue(X, Y, tl, w). In order to evaluate

the performance of our data integration model, we also conducted an experiment which uses

standard DBN on the same microarray dataset.

Figure 5.4 shows the network produced by the standard DBN, while Figure 5.5 shows the

network produced our method. Among those five edges with bestPV alue produced by partial

sequence, one edge (YOR372C – YPR119W) is missed in the network produced by standard

DBN method which only computes correlation of two full length time-series. On the other

hand, our method found all five edges.
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Table 5.1 minimum p-values and their associated time shift and window
size (rows with bold font are those gene pairs whose minimum
p-values are produced by sliding window shorter than the full
length of the time series)

Gene A Gene B time shift winSize p-value
YBR038W YPR119W 0 17 2.86E-07
YBR138C YGR092W 1 10 0
YOR372C YPR119W 2 10 1.18E-05
YJL187C YPR119W 4 17 1.99E-05
YBR133C YJL187C 1 13 4.15E-05
YDR507C YJL187C 0 17 5.22E-07
YER111C YDL056W -4 14 0
YER111C YPR119W 5 17 1.03E-05
YER111C YLR182W 0 17 4.80E-05
YDR146C YPR119W 5 17 6.75E-06
YPR119W YIL131C 4 17 2.33E-05
YJR092W YML064C 1 14 0.002156
YGR041W YLR353W 1 17 2.51E-06
YDR225W YBL003C 0 17 3.43E-05
YDR225W YBL002W 0 17 0.000169
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Figure 5.4 The network produced by standard DBN. (only takes microar-
ray data as input), the dashed line is the biologically mean-
ingful gene relationship with bestPV alue produced by partial
sequence, however standard DBN method failed to predict it.
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Figure 5.5 The network produced by our method (takes both microarray
data and qualitative prior). The edge between “YPR119w” and
“YOR372C” (with bold line) is missed in the standard DBN’s
prediction.
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CHAPTER 6. VISUALIZATION

6.1 Introduction

For biologists, it is crucial to understand the pathways that describe the relationships and

the interactions among molecules functioning in a cell. However, it is difficult for humans

to understand a very large graph directly from the raw data, so visualization techniques are

required to transform raw data into a more understandable format.

Some approaches of pathway visualization have been proposed previously. Kyoto Encyclo-

pedia of Genes and Genomes (KEGG) [Kanehisa and Goto, 2000] provides metabolic pathway

data both in XML-format files and manually created 2-D maps. Although these maps are

of very good quality, one obvious drawback is that every change of the pathway may cause

considerable effort to redraw the map. KEGG also provides a viewer that automatically draws

pathways in 2-D space. However due to the limitation of 2-D layout, in these maps many

crossings between lines and texts can be seen, especially when the pathways are complex.

Figure 6.1 shows a comparison of the visual effectiveness between 2-D and 3-D layout.

Figure 6.1(A) is a part of the pathway Pantothenate and CoA biosynthesis in 2-D space that is

drawn by KEGGs automatic pathway viewer. It is obvious that many lines, nodes, and texts

cross each other, which makes it hard for users to understand the relationships among them,

whereas in Figure 6.1(B), the same relations in 3-D space is much clearer to understand.

We believe that when the number of nodes and edges in a graph becomes large, it is more

preferable to use 3-D technology to visualize it. The advantage of 3-D visualization is that

users always have the ability to change the viewpoint to make a better observation.
0This chapter is an extended version of the paper: Li, S. and Chou, H.-H. (2005). Ubviz: a software tool for

exploring metabolic pathways in 3-d space. Biotechniques, 38(4):540, 542. [Li and Chou, 2005]



www.manaraa.com

58

Figure 6.1 A comparison between 2-D and 3-D visualizations of the
same metabolic pathway. (A) Pathway in 2-D space (source:
www.kegg.org). (B) The same pathway in 3-D space.
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For example, if we draw the same pathway Pantothenate and CoA biosynthesis in 3-D

space, as shown in Figure 1B, a user can zoom-in and rotate to an appropriate angle in 3-D

space so that the links to node C00134 can be seen more clearly.

In the system described in [Rojdestvenski, 2003], a 3-D graph layout algorithm was used

on metabolic pathways, and the results were stored in Virtual Reality Modeling Language

(VRML) format. Users can download these VRML files and view the 3-D VRML images with

a VRML browser. This approach allows data providers to publish 3-D pathway maps on their

web site. However, users can only passively receive the data in the visual format that the data

providers have already decided.

6.2 Method

In this paper, we introduce a novel approach for bringing metabolic pathways into 3-D

space. Compared with the aforementioned system, this approach has several advantages. First,

our system, UBViz, only needs logical descriptions of the pathways from the data providers and

performs the 3-D layout algorithm locally. As a result, less data is needed to be transferred

through the network, since the coordinate information is not needed by UBViz. Second,

the UBVizs XML interface enables existing XML format pathway files from KEGG to be

immediately usable; no change on the KEGG side is needed. Therefore, UBVizs users can make

use of all existing database resources, such as the pathway data KEGG provides, and benefit

from modern computer 3-D technology immediately without requiring the data providers to

expend any effort. Finally, UBViz is a standalone highly efficient C++ program that does not

depend on any other software to execute and is easily installable by end-users.

UBViz can use its embedded FTP functionality to download pathway files from KEGGs

FTP site directly. Incoming XML files are parsed by a module based on Expat

(http://expat.sourceforge.net). Useful information extracted from the XML files is then kept

by UBVizs parser module. This includes (i) a list of nodes and edges that are essential for 3-D

layout; (ii) each nodes type and name; (iii) information about whether an edge is directed or

not, which is used in the map drawing; and (iv) the URL of the reference page for a node,
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Figure 6.2 UBViz’s user interface

which is used to show the HTML-format explanation of the node. Next, the node and edge

information is fed into a 3-D layout module based on GraphViz [Ellson et al., 2003].

After the layout computation, 3-D coordinates for each node are generated and are used to

draw the objects on the screen. The results are rendered by OpenGL (http://www.opengl.org).

As shown in Figure 6.2, we use three basic 3-D shapes to represent the three different types

of nodes: (i) a sphere (red) represents a compound; (ii) a box (green) represents an enzyme;

and (iii) a cylinder (purple) represents a link to the connected pathway. For a directed edge,

an arrow (yellow) is added to one end of the edge to denote its direction. The viewpoint of

the scene can be easily changed by using a set of the 3-D navigation methods implemented

in UBViz, which provides adequate power for users to explore the pathways in a virtual 3-D

space.

UBViz has a user-friendly graphical interface developed using wxWidgets (http://www.wx-

widgets.org), an open-source multiplatform graphical user interface (GUI) toolkit. As shown

in Figure 6.2, all the users need to know is the name of the metabolic pathway file that UBViz

should load. Users can choose to load a file stored in a local disk or to get the file directly

from KEGG by inputting the file name in the FTP Location text field. After clicking Go,

pathway files will be downloaded and processed in the background. All nodes in the map will
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be displayed in three list boxes on the left side of the window according to their types, and

the 3-D map will be shown on the right side. If users want to know more details about a

compound or an enzyme, they can click on the corresponding name in the list boxes. KEGGs

reference page will then be shown in the HTML panel below, and the viewpoint of the 3-D

map will be automatically adjusted to face the node just selected by the users. Although we

have not explored the maximum size of a pathway that can be easily rendered and manipulated

in UBViz, the program has successfully handled the largest pathway graph available from the

KEGG database, a representation of purine metabolism, which contains 283 nodes and 488

edges. UBViz is distributed under the Gnu General Public License and can be downloaded

from http://www.complex.iastate.edu/download/UBViz/index.html. UBViz is available on all

major computing platforms including Windows, Linux, and Mac OS X.
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CHAPTER 7. CONCLUSION

In this dissertation I presented a novel method to improve the quality of gene network

reconstruction. Our method combines many essential ideas developed in previous works on

the topic of gene network reconstruction, and significantly extends the capability of the prior

approaches. Most of the previously proposed approaches in this field only have one of the two

desired features of a gene network reconstruction method: (1)integrating heterogeneous data,

and (2)generating cyclic gene network reflecting temporal programming of gene transcription

activity. Our method, on the other hand, distinguishes itself by having both of these advantages

as well as the capability to utilize qualitative information objectively.

In comparison with the existing published methods, we adopt the idea of training network

from [Kato et al., 2005] and [Yamanishi et al., 2004], where the prior knowledge is posed in

the format of a partial network serving the purpose of training the supervised learner. Their

works, however, are based on kernel methods and therefore the output graph has indirect

edges. The works of [Imoto et al., 2003] and [Nariai et al., 2004] integrate the knowledge such

as protein-protein interactions under the BN framework, our method differs from their meth-

ods in two aspects. First, our model can be applied on temporal data. Second, in their works,

each protein-protein interaction has to be assigned a value to be used for calculating the BIC

score. This pre-processed protein-protein interaction data, in the strict sense, is not qualita-

tive anymore. In terms of using DBNs and time-series microarray data, the work reported

in [Bernard and Hartemink, 2005] has some similarity with ours, but our method differs by

focusing on integrating qualitative prior knowledge.

We also integrated short-time correlation analysis into our Bayesian network based GRN

reconstruction process. The experiment results shows that it is a promising direction.
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In this dissertation we also focus on the scalability issue of BN-based gene network learning,

which is usually ignored by the previous research works. Our work successfully uses parallel

computing and multi-CPU system to speed up the BN structure learning process. The system

reported in [Yin et al., 2004] has the similar idea with ours; however, [Yin et al., 2004] did not

provide any result. In our experimental study, we build a network with 94 genes, since we use

DBN with 2 time slices, there are 188 actual nodes in the result BN.

Our software system can be extended to systems with more CPUs. We believe that with

more microarray data generated, using supercomputer to reconstruct genome-scale gene net-

work would be feasible in the future, and our system could be a valuable prototype for that

task.
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APPENDIX A. THE DERIVATION OF VIOLATION FUNCTION

1Without loss of generality, the qualitative evidences are represented as the answers of a

expert regarding to a certain matter, the answer can be either “yes” or “no”. Next we define a

violation function violation(θ, C) that indexes the extent to which the CPTs violate expert’s

answer. Violation takes the value 0 if there is no violation at all and some positive value

otherwise which increases with the seriousness of the violation.

A computationally convenient function that meets these requirements is the following one:

Pr(answer = yes|θ, C) = exp(−w · violation(θ, C)) (A.1)

where the positive weight w determines how quickly the probability decreases from its

maximum of 1 as the extent of violations increases.

We define xi1 < xi2 < . . . < xini for every node Xi with ni discrete states that is involved

in a qualitative influence. A qualitative influence is denoted by S?(Xw, Xz), where ? ∈ {+,−}

describes the quality (+ or - ) of a monotonic relationship between a variable Xw and one of

its children Xz. Two kinds of qualitative influences exist: If a positive one holds, an increase

in the state of Xw causes an increase (or at least no decrease) in the state of Xz. If the

relationship is negative, an increase in Xw ’s state causes a decrease (or at least no increase)

in Xz’s state.

A positive qualitative influence S+(Xw, Xz) can be described as follows: For any given

value of Xz, an increase in the value of Xw will not decrease the probability that the value

of Xz is equal to or greater than that given value. Formally, for all states xzm of Xz with

m¿1 and all distinct pairs of states xwi, xwj of Xw such that i ¿ j and for all possible state
1This appendix is a summary of [Wittig and Jameson, 2000]
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configurations y of Xz’s parents other than Xw, the following inequality must hold:

Pr(Xz ≥ xzm|xwi, y) ≥ Pr(Xz ≥ xzm|xwj, y) (A.2)

In terms of the conditional probabilities for individual states of Xz, the inequality A.2 can

be written in the following format:

nz∑
l=m

Pr(xzl|xwi, y) ≥
nz∑

l=m

Pr(xzl|xwj , y) (A.3)

and

c
′?wz
mijy :=

nz∑
l=m

Pr(xzl|xwi, y)−
nz∑

l=m

Pr(xzl|xwj , y) ≥ 0 (A.4)

For every violated positive constraint, there is at least one case does not satisfy the inequal-

ity of A.4. Note so far we only consider the positive constraint, however the mathematically

representation of negative constraint can be defined analogously.

The individual violation quantitity is given as:

c?wz
mijy =



−c
′?wz
mijy, if? = + and c

′?wz
mijy < 0

c
′?wz
mijy, if? = − and c

′?wz
mijy > 0

0, otherwise

(A.5)

Finally, the violation function is defined as the sum of all of the individual violations:

violation(θ, C) =
∑

m,i.j.y,w,z

c?wz
mijy (A.6)
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APPENDIX B. GENES AND REFERENCE NETWORKS OF TWO

EXPERIMENTS

B.1 Experiment 1 (small)

List of genes:

DEP1 HIR1 PHO2 SHS1 SWI5 UME6

SUM1 MSN5 SWI4 PHO4 PMR1 RME1

STB5 CHS6 CDC45 ACE2 SWI6 CDC42

ATP14 SUB1 FKH2 PHO80 SIN3 ATF1

PHO85

Reference Network:

SWI4-SWI6 SWI4-DEP1 SWI4-SHS1

SWI4-CDC42 SWI4-CDC45 SWI4-PHO85

ATF1-STB5 PHO4-PHO2 PHO4-PHO80

SWI5-MSN5 SWI5-DEP1 SWI5-CDC45

CDC45-STB5 CDC45-SUB1 DEP1-PMR1

DEP1-STB5 STB5-SIN3 PHO85-PHO80

PHO85-PMR1 SUB1-ATP14 RME1-ACE2

FKH2-SWI5 FKH2-ACE2 SUM1-CDC42

UME6-PHO85 UME6-SIN3 MSN5-CHS6

CHS6-UME6 HIR1-DEP1 HIR1-CDC45

Training Network:
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SWI4-CDC42 SWI4-CDC45 SWI4-DEP1

SWI4-PHO85 PHO85-UME6 UME6-CHS6

B.2 Experiment 2 (large)

List of genes:

CLN3 HTB2 HTA2 MCM2 HHF1 HHT1

TEC1 HSL7 MCD1 PSA1 MBP1 DUN1

PCL2 PCL9 HO SWI5 HTB1 HTA1

GIC2 MFA1 GIN4 MCM3 MNN1 RNR1

RAD51 SWI4 STE2 ALK1 SCW11 AGA2

OCH1 CDC20 MCM6 MSB2 BUD9 DBF2

TEL2 CLB6 SKN1 RSR1 CRH1 SCW4

WSC4 GIC1 SPO12 IRR1 PCL7 SIM1

FKH1 FAR1 CIS3 SWE1 CDC6 BUD4

CWP1 CWP2 RAD27 ASH1 STE6 SIC1

RAX2 CDC45 ACE2 SWI6 CLB4 CDC46

CTS1 EXG1 BUD8 TEM1 MCM1 PDS5

CTF18 CLN1 GAS1 FKH2 MFA2 APC1

CHS1 PCL1 EGT2 AGA1 CDC21 NDD1

HOS3 HHO1 CLN2 ARP7 OPY2 CLB2

CLB5 KRE6 HTA3 GLS1

Reference network:
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PCL9-SWI5 CDC6-SWI4 CDC6-SWI6

CDC6-MBP1 CDC6-MCM1 SIC1-SWI5

SWI4-SWI4 SWI4-SWI6 SWI4-MBP1

SWI4-MCM1 PCL2-SWI4 PCL2-SWI6

PCL2-ACE2 PCL2-SWI5 CLB6-SWI4

CLB6-SWI6 CLB6-MBP1 CLB6-FKH2

CLB5-MBP1 CLB5-SWI6 SWE1-SWI4

SWE1-SWI6 SWE1-MBP1 PCL1-SWI4

PCL1-SWI6 PCL1-MBP1 PCL1-FKH2

PCL1-MCM1 CLN2-SWI4 CLN2-SWI6

CLN1-SWI4 CLN1-SWI6 CLN1-MBP1

CLN1-FKH1 CLN1-FKH2 OPY2-MBP1

OPY2-SWI6 NDD1-SWI4 NDD1-SWI6

CLB4-FKH1 SIM1-SWI4 SIM1-SWI6

SIM1-FKH2 SIM1-MCM1 PCL7-SWI5

HSL7-FKH2 APC1-FKH1 ACE2-FKH1

ACE2-FKH2 ACE2-MCM1 ACE2-NDD1

CLB2-SWI4 CLB2-SWI6 CLB2-FKH1

CLB2-FKH2 CLB2-MCM1 CLB2-NDD1

SWI5-FKH2 SWI5-MCM1 SWI5-NDD1

TEM1-FKH1 TEM1-FKH2 CDC20-FKH2

CDC20-MCM1 CDC20-NDD1 SPO12-MBP1

SPO12-SWI6 SPO12-FKH2 SPO12-MCM1

SPO12-NDD1 CLN3-MCM1 CLN3-ACE2
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CLN3-SWI5 DBF2-MCM1 FAR1-MCM1

CHS1-SWI5 TEC1-SWI5 EGT2-ACE2

EGT2-SWI5 GIC2-SWI4 GIC2-SWI6

GIC2-MBP1 SCW11-ACE2 SCW11-SWI5

GIN4-SWI4 GIN4-SWI6 GIN4-MBP1

BUD9-SWI4 BUD9-SWI6 BUD9-FKH1

BUD9-MCM1 BUD9-ACE2 BUD9-SWI5

OCH1-SWI4 OCH1-SWI6 CTS1-FKH2

CTS1-ACE2 CTS1-SWI5 RSR1-SWI4

RSR1-SWI6 CRH1-SWI4 CRH1-SWI6

CRH1-MBP1 CRH1-SWI5 MSB2-SWI4

MSB2-SWI6 MNN1-SWI4 MNN1-SWI6

EXG1-SWI4 EXG1-SWI6 EXG1-MBP1

EXG1-FKH1 EXG1-FKH2 EXG1-ACE2

EXG1-SWI5 GLS1-SWI4 GLS1-SWI6

GAS1-SWI4 GAS1-SWI6 PSA1-SWI4

PSA1-SWI6 PSA1-ACE2 KRE6-SWI4

KRE6-SWI6 GIC1-SWI4 GIC1-SWI6

GIC1-FKH2 CWP1-SWI4 CWP1-SWI6

CWP1-FKH2 CIS3-SWI4 CIS3-SWI6

CIS3-FKH2 CWP2-SWI4 CWP2-SWI6

CWP2-MBP1 BUD4-FKH1 BUD4-FKH2

BUD4-MCM1 BUD4-NDD1 WSC4-ACE2

BUD8-FKH1 SCW4-SWI4 SCW4-SWI6

RAX2-SWI4 RAX2-SWI6 RAX2-FKH2

RAX2-MCM1 RAX2-NDD1 SKN1-MCM1

RNR1-SWI4 RNR1-SWI6 RNR1-MBP1

RAD51-FKH2 DUN1-MBP1 DUN1-SWI6

ALK1-MCM1 CTF18-FKH1 HHF1-FKH1

HHT1-FKH1 HTB2-SWI4 HTB2-SWI6

HTB1-SWI4 HTB1-SWI6 HTA1-SWI4

HTA1-SWI6 HTA2-SWI4 HTA2-SWI6

HHO1-SWI4 HHO1-SWI6 TEL2-FKH1

ARP7-FKH1 HTA3-SWI4 HTA3-SWI6

HOS3-FKH1 MCM3-MCM1 CDC46-MCM1

CDC45-MBP1 CDC45-SWI6 MCM2-MBP1

MCM2-SWI6 MCM6-MCM1 ASH1-SWI5

AGA2-MCM1 AGA1-SWI4 AGA1-SWI6

AGA1-MBP1 AGA1-MCM1 HO-SWI4

HO-SWI6 MFA1-MCM1 MFA2-MCM1

MFA2-SWI5 STE6-MCM1 STE2-MCM1
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RNR1-FKH2 RAD27-MBP1 RAD27-SWI6

CDC21-MBP1 CDC21-SWI6 IRR1-MBP1

IRR1-SWI6 MCD1-MBP1 MCD1-SWI6

PDS5-MBP1 PDS5-SWI6 PDS5-FKH1

PDS5-FKH2 RAD51-MBP1 RAD51-SWI6

RAD51-FKH2 DUN1-MBP1 DUN1-SWI6

ALK1-MCM1 CTF18-FKH1 HHF1-FKH1

HHT1-FKH1 HTB2-SWI4 HTB2-SWI6

HTB1-SWI4 HTB1-SWI6 HTA1-SWI4

HTA1-SWI6 HTA2-SWI4 HTA2-SWI6

HHO1-SWI4 HHO1-SWI6 TEL2-FKH1

ARP7-FKH1 HTA3-SWI4 HTA3-SWI6

CDC45-MBP1 CDC45-SWI6 MCM2-MBP1

MCM2-SWI6 MCM6-MCM1 ASH1-SWI5

AGA2-MCM1 AGA1-SWI4 AGA1-SWI6

AGA1-MBP1 AGA1-MCM1 HO-SWI4

HO-SWI6 MFA1-MCM1 MFA2-MCM1

MFA2-SWI5 STE6-MCM1 STE2-MCM1

Training network:

CDC6-SWI4 CDC6-SWI6 CDC6-MBP1

CDC6-MCM1 SWI4-SWI4 SWI4-SWI6

SWI4-MBP1 SWI4-MCM1 CLN1-SWI4

CLN1-SWI6 CLN1-MBP1 CLN1-FKH1

CLN1-FKH2 NDD1-SWI4 NDD1-SWI6
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ACE2-FKH1 ACE2-FKH2 ACE2-MCM1

ACE2-NDD1 SWI5-FKH2 SWI5-MCM1

SWI5-NDD1 SPO12-MBP1 SPO12-SWI6

SPO12-FKH2 SPO12-MCM1 SPO12-NDD1

BUD9-SWI4 BUD9-SWI6 BUD9-FKH1

BUD9-MCM1 BUD9-ACE2 BUD9-SWI5

CTS1-FKH2 CTS1-ACE2 CTS1-SWI5

CRH1-SWI4 CRH1-SWI6 CRH1-MBP1

CRH1-SWI5 PSA1-SWI4 PSA1-SWI6

PSA1-ACE2 GIC1-SWI4 GIC1-SWI6

GIC1-FKH2 CIS3-SWI4 CIS3-SWI6

CIS3-FKH2 BUD4-FKH1 BUD4-FKH2

BUD4-MCM1 BUD4-NDD1
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